5 research outputs found

    Inverse problem of photoelastic fringe mapping using neural networks

    Get PDF
    This paper presents an enhanced technique for inverse analysis of photoelastic fringes using neural networks to determine the applied load. The technique may be useful in whole-field analysis of photoelastic images obtained due to external loading, which may find application in a variety of specialized areas including robotics and biomedical engineering. The presented technique is easy to implement, does not require much computation and can cope well within slight experimental variations. The technique requires image acquisition, filtering and data extraction, which is then fed to the neural network to provide load as output. This technique can be efficiently implemented for determining the applied load in applications where repeated loading is one of the main considerations. The results presented in this paper demonstrate the novelty of this technique to solve the inverse problem from direct image data. It has been shown that the presented technique offers better result for the inverse photoelastic problems than previously published works

    Interactive balance training integrating sensor-based visual feedback of movement performance : a pilot study in older adults

    Get PDF
    Background:Wearable sensor technology can accurately measure body motion and provide incentive feedback during exercising. The aim of this pilot study was to evaluate the effectiveness and user experience of a balance training program in older adults integrating data from wearable sensors into a human-computer interface designed for interactive training.Methods:Senior living community residents (mean age 84.6) with confirmed fall risk were randomized to an intervention (IG, n = 17) or control group (CG, n = 16). The IG underwent 4 weeks (twice a week) of balance training including weight shifting and virtual obstacle crossing tasks with visual/auditory real-time joint movement feedback using wearable sensors. The CG received no intervention. Outcome measures included changes in center of mass (CoM) sway, ankle and hip joint sway measured during eyes open (EO) and eyes closed (EC) balance test at baseline and post-intervention. Ankle-hip postural coordination was quantified by a reciprocal compensatory index (RCI). Physical performance was quantified by the Alternate-Step-Test (AST), Timed-up-and-go (TUG), and gait assessment. User experience was measured by a standardized questionnaire.Results:After the intervention sway of CoM, hip, and ankle were reduced in the IG compared to the CG during both EO and EC condition (p = .007-.042). Improvement was obtained for AST (p = .037), TUG (p = .024), fast gait speed (p = . 010), but not normal gait speed (p = .264). Effect sizes were moderate for all outcomes. RCI did not change significantly. Users expressed a positive training experience including fun, safety, and helpfulness of sensor-feedback.Conclusions:Results of this proof-of-concept study suggest that older adults at risk of falling can benefit from the balance training program. Study findings may help to inform future exercise interventions integrating wearable sensors for guided game-based training in home- and community environments. Future studies should evaluate the added value of the proposed sensor-based training paradigm compared to traditional balance training programs and commercial exergames.Trial registration:http://www.clinicaltrials.gov NCT02043834.publishe

    Sensor-based balance training with motion feedback in people with mild cognitive impairment

    No full text
    Some individuals with mild cognitive impairment (MCI) experience not only cognitive deficits but also a decline in motor function, including postural balance. This pilot study sought to estimate the feasibility, user experience, and effects of a novel sensor-based balance training program. Patients with amnestic MCI (mean age 78.2 yr) were randomized to an intervention group (IG, n = 12) or control group (CG, n = 10). The IG underwent balance training (4 wk, twice a week) that included weight shifting and virtual obstacle crossing. Real-time visual/audio lower-limb motion feedback was provided from wearable sensors. The CG received no training. User experience was measured by a questionnaire. Postintervention effects on balance (center of mass sway during standing with eyes open [EO] and eyes closed), gait (speed, variability), cognition, and fear of falling were measured. Eleven participants (92%) completed the training and expressed fun, safety, and helpfulness of sensor feedback. Sway (EO, p = 0.04) and fear of falling (p = 0.02) were reduced in the IG compared to the CG. Changes in other measures were nonsignificant. Results suggest that the sensorbased training paradigm is well accepted in the target population and beneficial for improving postural control. Future studies should evaluate the added value of the sensor-based training compared to traditional training
    corecore